pf
pf::bases::pf_withcov_base< float_t, dimobs, dimstate, dimcov > Class Template Referenceabstract

Public Types

using float_type = float_t
 
using obs_sized_vec = Eigen::Matrix< float_t, dimobs, 1 >
 
using state_sized_vec = Eigen::Matrix< float_t, dimstate, 1 >
 
using cov_sized_vec = Eigen::Matrix< float_t, dimcov, 1 >
 
using dynamic_matrix = Eigen::Matrix< float_t, Eigen::Dynamic, Eigen::Dynamic >
 
using func = std::function< const dynamic_matrix(const state_sized_vec &, const cov_sized_vec &)>
 
using func_vec = std::vector< func >
 

Public Member Functions

virtual void filter (const obs_sized_vec &data, const cov_sized_vec &cov, const func_vec &fs=func_vec())=0
 the filtering function that must be defined More...
 
virtual float_t getLogCondLike () const =0
 the getter method that must be defined (for conditional log-likelihood) More...
 
virtual ~pf_withcov_base ()
 virtual destructor
 

Static Public Attributes

static constexpr unsigned int dim_obs = dimobs
 
static constexpr unsigned int dim_state = dimstate
 

Member Typedef Documentation

◆ cov_sized_vec

template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
using pf::bases::pf_withcov_base< float_t, dimobs, dimstate, dimcov >::cov_sized_vec = Eigen::Matrix<float_t,dimcov,1>

expose covariate-sized vector type to users

Member Function Documentation

◆ filter()

template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
virtual void pf::bases::pf_withcov_base< float_t, dimobs, dimstate, dimcov >::filter ( const obs_sized_vec &  data,
const cov_sized_vec cov,
const func_vec &  fs = func_vec() 
)
pure virtual

the filtering function that must be defined

Parameters
datathe most recent observation
filterfunctions whose expected value approx. is computed at each time step

◆ getLogCondLike()

template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
virtual float_t pf::bases::pf_withcov_base< float_t, dimobs, dimstate, dimcov >::getLogCondLike ( ) const
pure virtual

the getter method that must be defined (for conditional log-likelihood)

Returns
log p(y_t | y_{1:t-1}) approximation

The documentation for this class was generated from the following file: