|
using | float_type = float_t |
|
using | obs_sized_vec = Eigen::Matrix< float_t, dimobs, 1 > |
|
using | state_sized_vec = Eigen::Matrix< float_t, dimstate, 1 > |
|
using | cov_sized_vec = Eigen::Matrix< float_t, dimcov, 1 > |
|
using | dynamic_matrix = Eigen::Matrix< float_t, Eigen::Dynamic, Eigen::Dynamic > |
|
using | func = std::function< const dynamic_matrix(const state_sized_vec &, const cov_sized_vec &)> |
|
using | func_vec = std::vector< func > |
|
|
virtual void | filter (const obs_sized_vec &data, const cov_sized_vec &cov, const func_vec &fs=func_vec())=0 |
| the filtering function that must be defined More...
|
|
virtual float_t | getLogCondLike () const =0 |
| the getter method that must be defined (for conditional log-likelihood) More...
|
|
virtual | ~pf_withcov_base () |
| virtual destructor
|
|
|
static constexpr unsigned int | dim_obs = dimobs |
|
static constexpr unsigned int | dim_state = dimstate |
|
◆ cov_sized_vec
template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
expose covariate-sized vector type to users
◆ filter()
template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
the filtering function that must be defined
- Parameters
-
data | the most recent observation |
filter | functions whose expected value approx. is computed at each time step |
◆ getLogCondLike()
template<typename float_t , size_t dimobs, size_t dimstate, size_t dimcov>
the getter method that must be defined (for conditional log-likelihood)
- Returns
- log p(y_t | y_{1:t-1}) approximation
The documentation for this class was generated from the following file: