#include <pf_base.h>
|
using | timePair = std::pair< std::array< state_sized_vec, nparts >, std::array< obs_sized_vec, nparts > > |
|
using | manyPairs = std::vector< timePair > |
|
using | obsPaths = std::vector< std::array< obs_sized_vec, nparts > > |
|
using | statePaths = std::vector< std::array< state_sized_vec, nparts > > |
|
|
manyPairs | sim_future (unsigned int num_time_steps, const obs_sized_vec &yt) |
| simulates future state and observations paths from p(x_{t+1:T},y_{t+1:T} | y_{1:t}, theta) More...
|
|
obsPaths | sim_future_obs (unsigned int num_time_steps, const obs_sized_vec &yt) |
| simulates future observation paths from p(y_{t+1:T} | y_{1:t}, theta) More...
|
|
statePaths | sim_future_states (unsigned int num_time_steps, const obs_sized_vec &yt) |
| simulates future state paths from p(x_{t+1:T} | y_{1:t}, theta) More...
|
|
virtual std::array< state_sized_vec, nparts > | get_uwtd_samps () const =0 |
| gets the most recent unweighted samples, to be fed into sim_future()
|
|
virtual state_sized_vec | fSamp (const state_sized_vec &xtm1, const obs_sized_vec &ytm1)=0 |
| returns a sample from the latent Markov transition More...
|
|
virtual obs_sized_vec | gSamp (const state_sized_vec &xt)=0 |
| returns a sample for the observed series More...
|
|
|
using | obs_sized_vec = Eigen::Matrix< float_t, dimy, 1 > |
|
using | state_sized_vec = Eigen::Matrix< float_t, dimx, 1 > |
|
template<size_t dimx, size_t dimy, typename float_t, size_t nparts>
class pf::bases::GenFutureSimulator< dimx, dimy, float_t, nparts >
- Author
- Taylor
◆ fSamp()
template<size_t dimx, size_t dimy, typename float_t , size_t nparts>
virtual state_sized_vec pf::bases::GenFutureSimulator< dimx, dimy, float_t, nparts >::fSamp |
( |
const state_sized_vec & |
xtm1, |
|
|
const obs_sized_vec & |
ytm1 |
|
) |
| |
|
pure virtual |
returns a sample from the latent Markov transition
- Parameters
-
the | previous time's state value |
the | previous time's observed value |
- Returns
- a state-sized vector for the xt sample
◆ gSamp()
template<size_t dimx, size_t dimy, typename float_t , size_t nparts>
returns a sample for the observed series
- Parameters
-
the | current time step's state value |
- Returns
- an observation sample for the current time step
◆ sim_future()
template<size_t dimx, size_t dimy, typename float_t , size_t nparts>
simulates future state and observations paths from p(x_{t+1:T},y_{t+1:T} | y_{1:t}, theta)
- Parameters
-
number | of time steps into the future you want to simulate |
the | most recent observation that you have available |
- Returns
- one state path and one observation path for each state sample
◆ sim_future_obs()
template<size_t dimx, size_t dimy, typename float_t , size_t nparts>
simulates future observation paths from p(y_{t+1:T} | y_{1:t}, theta)
- Parameters
-
number | of time steps into the future you want to simulate |
the | most recent observation that you have available |
- Returns
- one observation path for each state sample
◆ sim_future_states()
template<size_t dimx, size_t dimy, typename float_t , size_t nparts>
simulates future state paths from p(x_{t+1:T} | y_{1:t}, theta)
- Parameters
-
number | of time steps into the future you want to simulate |
the | most recent observation that you have available |
- Returns
- one state path for each state sample
The documentation for this class was generated from the following file: