#include <pf_base.h>
|
using | aPair = std::pair< std::vector< state_sized_vec >, std::vector< obs_sized_vec > > |
|
|
aPair | sim_forward (unsigned int T) |
| simulates once forward through time from p(x_{1:T}, y_{1:T} | theta)
|
|
virtual state_sized_vec | muSamp ()=0 |
| samples from the first time's state distribution More...
|
|
virtual state_sized_vec | fSamp (const state_sized_vec &xtm1)=0 |
| returns a sample from the latent Markov transition More...
|
|
virtual obs_sized_vec | gSamp (const state_sized_vec &xt)=0 |
| returns a sample for the observed series More...
|
|
|
using | obs_sized_vec = Eigen::Matrix< float_t, dimy, 1 > |
|
using | state_sized_vec = Eigen::Matrix< float_t, dimx, 1 > |
|
template<size_t dimx, size_t dimy, typename float_t>
class pf::bases::ForwardMod< dimx, dimy, float_t >
- Author
- Taylor
◆ fSamp()
template<size_t dimx, size_t dimy, typename float_t >
virtual state_sized_vec pf::bases::ForwardMod< dimx, dimy, float_t >::fSamp |
( |
const state_sized_vec & |
xtm1 | ) |
|
|
pure virtual |
returns a sample from the latent Markov transition
- Parameters
-
the | previous time's state vector |
the | previous time's observation |
- Returns
- a state-sized vector for the xt sample
◆ gSamp()
template<size_t dimx, size_t dimy, typename float_t >
returns a sample for the observed series
- Parameters
-
the | current time's state |
the | previous time's observation |
- Returns
- a sample for the observation at this time step
◆ muSamp()
template<size_t dimx, size_t dimy, typename float_t >
samples from the first time's state distribution
- Returns
- a state-sized vector for the x1 sample
The documentation for this class was generated from the following file: